

Concrete / Pictorial / Abstract Maths Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondary school.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's
(1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

Foundation Stage 1 Introduction to Addition

Before addition can be introduced, children need to have a secure knowledge of number. In F1, children are introduced to the concept of counting, number order and number recognition through practical activities, games and singing songs and rhymes.

This is taught through child initiated games, such as hide and seek and I spy. Adults use any opportunity during time in continuous provision to incorporate counting and number recognition with the children. Children also learn how to count 1-1 (pointing to each object as they count) and that anything can be counted, for example, claps, steps and jumps. This is reinforced by opportunities provided in the outdoor area for the children to count e.g. counting building blocks, twigs etc.

Once children are secure in their number knowledge, children are introduced to the concept of more and less. Children learn how to distinguish the difference between sets of objects and when two groups are of the same size. Adults model the initial addition vocabulary supported by age appropriate definition. An example of this is
"This group has more, this group has less. These groups have the same. They are equal"

Children are taught all number objectives within the 30-50 month age band from the Development Matters curriculum beginning to extend into 40-60 months. Children are then given opportunities to transfer adult taught skills during independent play. This is supported by the three Characteristics of Effective Learning: playing and exploring, active learning, creating and thinking critically

Foundation Stage 1 Introduction to Subtraction

Before subtraction can be introduced, children need to have a secure knowledge of number. In F1, children are introduced to the concept of counting backwards. This is taught through child initiated games indoors and outdoors such as acting out counting songs and running races (children shouting " $5,4,3,2,1,0-60!$ ").

Once children are secure in their number knowledge, children are introduced to the concept of less and subtracting by counting backwards. Children learn how to take 1 object away through singing songs such as ' 5 little monkeys'. Children use their fingers to represent how many monkeys are left with adults modelling how to 'subtract' one finger / monkey away each time.

Adults model the initial subtraction vocabulary supported by age appropriate definition. An example of this is

> "subtract / take away, we have one less
> monkey, OH NO! One monkey has gone away!"

Children are taught all number objectives within the 30-50 month age band from the Development Matters curriculum beginning to extend to 40-60 months. Children are then given opportunities to transfer adult taught skills during independent play. This is supported by the three characteristics of effective learning: playing and exploring, active learning, creating and thinking critically

Foundation Stage 2 Addition

YEAR 1 Addition

Objective / Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ Use the part part whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10 . Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10 . $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Include missing number questions: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5 .'

YEAR 2 Addition

Objective /Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part, part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	Explore commutativity of addition by swapping the addends to build a fact family. Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations. $\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$
Using known facts		Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$

Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic' ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	$17+5=22$ Use part part whole and number line to model.	$\begin{array}{\|l} \hline 17+5=22 \\ \text { Explore related facts } \\ 17+5=22 \\ 5+17=22 \\ 22-17=5 \\ 22-5=17 \\ \hline 17 \\ \hline \end{array}$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

Add two 2-digit numbers	ARAB Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole i hecessary.	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
			Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 1o then add third digit	Regroup and draw representation.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

YEAR 3 Addition

Objective ／Strategy	Concrete	Pictorial	Abstract
Column Addition－no regrouping （friendly numbers）		Children move to drawing the counters us frame．	22
Add two or three 2 or 3digit numbers．	Add together the ones first，then the tens． 胃里胃 Move to using place value counters		Add the ones first，then the tens，then the hundreds．

Column Addition with regrouping.	Exchange ten ones for a ten. Model using numicon and place value counters.	$\begin{array}{r} 34 \\ +17 \end{array}$ Children can draw a representation o support t carrying the ten underneath the line	$20+5$ $40+13$$60+73$ Start by partitioning the numbers before formal column to show the exchange. $\frac{+85}{621}$ 1
	$46+27=73$		

YEARS 4 - 6 Addition

Objective /Strategy	Concrete	Pictorial	Abstract
Years 4-6 Estimate and use inverse operations to check answers to a calculation	AS per Year 3		
Y4-add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet $\bullet \bullet$ $\bullet \bullet$ \bullet $\because \bullet$ $\bullet \bullet$ \bullet $\bullet \bullet$ $\vdots \bullet$ \bullet 7 1 5 1 \bullet \bullet Draw representations using place value grid.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.		$2.37+81.79$ tens ones tentrs hundreates 00 0000 0000 00000 0 00000 00 000 0000 000 0000	

Foundation Stage 2 Subtraction

YEAR 1 SUBTRACTION

Taking away ones. | Use physical objects, counters, cubes etc |
| :--- |
| to show how objects can be taken away. |

Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister.?

Objective/Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$
Make 10	$14-5$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?

| Incluan model |
| :--- | :--- | :--- | :--- |
| inverse operations. |

YEAR 2 - SUBTRACTION

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	34-13 = 21 Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

YEAR 3 - SUBTRACTION

Objective/ Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three digit number + ones three digit number + tens three digit number + hundreds			Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{aligned} & 678=?-1 \\ & 688-10=? \\ & 678=?-100 \end{aligned}$
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -20+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.

Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	$\begin{array}{ccc} 728 & -582=146 \\ \text { H } & \top & u \\ { }^{7} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$	Begin by partitioning into pv columns Then move to formal method.

YEARS $4-6$ SUBTRACTION

Objective /Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5- Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places	As Year 4	Children to draw pv counters and show their exchange-see Y3	S.

Foundation Stage 2 Doubling

Early Learning Goal	Main Concrete/Pictoria/Abstract representations
To solve problems including doubling	

YEAR 1 MULTIPLICATION

Programme of Study specifies the following objectives, however it does not require the explicit teaching of the mathematical symbol of multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective / Strategy \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities using manipultives including cubes and Numicon to demonstrate doubling \& \begin{tabular}{l}
Draw pictures to show how to double numbers

Double 4 is 8

\square
\square

\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples

\[
(2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s})

\] \& Count the groups as children are skip counting, children may use their fingers as they are skip counting. \& Children make representations to show counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$ |

\hline
\end{tabular}

Making equal groups and counting the total	Use manipulatives to create equal groups.	to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe object and pictures.
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5 , 3 lots of 2 etc.	Draw representations of arrays to show	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$

YEAR 2 MULTIPLICATION

Children should be able to recall and use multiplication and division facts for the 2，5 and 10 times times tables．

Objective／Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters． 后后后回 $40+12=52$	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together．
Counting in multiples of $2,3,4$ ， 5， 10 from 0 （repeated addition）	Count the groups as children are skip counting，children may use their fingers as they are skip counting．Use bar models． $5+5+5+5+5+5+5+5=40$	Number lines，counting sticks and bar models should be used to show representation of counting in multiples．	Count in multiples of a number aloud． Write sequences with multiples of numbers． $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Objective / Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$12=3 \times 4 \quad 12=4 \times$ 3
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables

Solve problems, including missing number problems, integer scaling problems,			Three times as high, eight times as long
			$? \times 5=20$
			$3 \div ?=5$

YEARS 4-6 Multiplication

Objective /Strategy	Concrete	Pictorial	Abstract
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows Fill each row with 126 Add up each colt les making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid. $210+35=245$
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	

Foundation Stage 2 Halving and Sharing

Early Learning Goal	Main Concrete/Pictoria//Abstract representations
To solve problems including halving and sharing	

Ybjective /Strategy	Concrete	Pictorial	Abstract

| Objective/ Strategy | Concrete | Abstract |
| :--- | :---: | :---: | :---: | :---: |
| Division as sharing | | |
| Use Gordon ITPs for | | |
| modelling | | |

Objective/Strategy	Concrete	Pictorial				Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding.				$12 \div 3=4$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$				$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

YEAR 2

Objective/Strategy	Concrete	Pictorial	Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24 ? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3=5 \quad 5 \times 3=15$ $15 \div 5=3 \quad 3 \times 5=15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $\begin{aligned} & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

YEAR 3

(Greater Depth Y2)
Objective/Strategy
Division with
remainders.

Year 4-6			
Objective/Strategy	Concrete	Pictorial	Abstract

Divide at least 3 digit
numbers by 1 digit.

Short Division
$96 \div 3$

Long Division

Step 1-a remainder in the ones

h to
 041 R1
 $4 \longdiv { 1 6 5 }$

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds (3,200).
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued...

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$
\square
When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

Step 2－a remainder in the tens

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
$\begin{array}{r} t 0 \\ 2 \longdiv { 2 8 } \end{array}$ Two goes into 5 two times，or 5 tens $\div 2=2$ whole tens－－but there is a remainder！	$\begin{gathered} t o \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find it，multiply $2 \times 2=4$ ，write that 4 under the five，and subtract to find the remainder of 1 ten．	$\begin{array}{r} t \circ \\ 29 \\ 2 \longdiv { 5 8 } \\ -4 \downarrow \\ \hline 18 \end{array}$ Next，drop down the 8 of the ones next to the leftover 1 ten．You combine the remainder ten with 8 ones，and get 18.

1．Divide．	2．Multiply \＆subtract．	3．Drop down the next digit．
t 。	t 。	t 。
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$-\frac{4}{18}$	－4 18	$-\frac{4}{18}$
	$\begin{array}{r}18 \\ -18 \\ \hline\end{array}$	$\begin{array}{r}18 \\ -18 \\ \hline\end{array}$
	0	0
Divide 2 into 18．Place 9 into the quotient．	Multiply $9 \times 2=18$ ，write that 18 under the 18 ，and subtract．	The division is over since there are no more digits in the dividend．The quotient is 29 ．

